Smchd1-Dependent and -Independent Pathways Determine Developmental Dynamics of CpG Island Methylation on the Inactive X Chromosome
نویسندگان
چکیده
X chromosome inactivation involves multiple levels of chromatin modification, established progressively and in a stepwise manner during early development. The chromosomal protein Smchd1 was recently shown to play an important role in DNA methylation of CpG islands (CGIs), a late step in the X inactivation pathway that is required for long-term maintenance of gene silencing. Here we show that inactive X chromosome (Xi) CGI methylation can occur via either Smchd1-dependent or -independent pathways. Smchd1-dependent CGI methylation, the primary pathway, is acquired gradually over an extended period, whereas Smchd1-independent CGI methylation occurs rapidly after the onset of X inactivation. The de novo methyltransferase Dnmt3b is required for methylation of both classes of CGI, whereas Dnmt3a and Dnmt3L are dispensable. Xi CGIs methylated by these distinct pathways differ with respect to their sequence characteristics and immediate chromosomal environment. We discuss the implications of these results for understanding CGI methylation during development.
منابع مشابه
Epigenetic Functions of Smchd1 Repress Gene Clusters on the Inactive X Chromosome and on Autosomes
The Smchd1 gene encodes a large protein with homology to the SMC family of proteins involved in chromosome condensation and cohesion. Previous studies have found that Smchd1 has an important role in CpG island (CGI) methylation on the inactive X chromosome (Xi) and in stable silencing of some Xi genes. In this study, using genome-wide expression analysis, we showed that Smchd1 is required for t...
متن کاملInactive X chromosome-specific reduction in placental DNA methylation
Genome-wide levels of DNA methylation vary between tissues, and compared with other tissues, the placenta has been reported to demonstrate a global decrease in methylation as well as decreased methylation of X-linked promoters. Methylation is one of many features that differentiate the active and inactive X, and it is well established that CpG island promoters on the inactive X are hypermethyla...
متن کاملIndependent Mechanisms Target SMCHD1 to Trimethylated Histone H3 Lysine 9-Modified Chromatin and the Inactive X Chromosome
The chromosomal protein SMCHD1 plays an important role in epigenetic silencing at diverse loci, including the inactive X chromosome, imprinted genes, and the facioscapulohumeral muscular dystrophy locus. Although homology with canonical SMC family proteins suggests a role in chromosome organization, the mechanisms underlying SMCHD1 function and target site selection remain poorly understood. He...
متن کاملStudy of promoter CpG island hypermethylation of cyclindependent kinase inhibitor gene p21waf1/cip1 on some breast carcinoma cell lines
The p21 belongs to the CIP/KIP family of CDK inhibitors involved in cell cycle arrest at specific stages of the cell cycle progression. DNA methylation is the best studied epigenetic mark that have been evidently associated to chromatin condensation, and repression of gene transcription. The CpG island hypermethylation in promoter region of certain genes occurs in cancer cells and affects tumor...
متن کاملX inactivation-specific methylation of LINE-1 elements by DNMT3B: implications for the Lyon repeat hypothesis.
Lyon has proposed that long interspersed nuclear element 1 (LINE-1 or L1) repeats may be mediators for the spread of X chromosome inactivation. Cells from ICF patients who are deficient in one of the DNA methyltransferases, DNMT3B, provide an opportunity to explore and refine this hypothesis. Southern blot and bisulfite methylation analyses indicate that, in normal somatic cells, X-linked L1s a...
متن کامل